Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
Reproduction ; 167(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271820

RESUMEN

In brief: In this study, we examined the relationship between BMAL1 expression and the genes regulating steroid biosynthesis in human luteinized granulosa cells. BMAL1 function is crucial for steroid production and proper ovarian function, highlighting the importance of circadian clock regulation in female reproductive health. Abstract: Human luteinized granulosa cells were collected to analyze circadian clock gene expression and its effect on the genes regulating steroid biosynthesis. We used siRNA to knock down the expression of BMAL1 in KGN cells. We measured the expression levels of genes regulating steroid biosynthesis and circadian clock RT-qPCR. We demonstrated that BMAL1 expression positively correlates with genes regulating steroid biosynthesis (CYP11A1, CYP19A1, STAR, and ESR2). The knockdown of BMAL1 in KGN cells revealed a significant decrease in steroid synthase expression. In contrast, when BMAL1 was overexpressed in KGN and HGL5 cells, we observed a significant increase in the expression of steroid synthases, such as CYP11A1 and CYP19A1. These results indicated that BMAL1 positively controls 17ß-estradiol (E2) secretion in granulosa cells. We also demonstrated that dexamethasone synchronization in KGN cells enhanced the rhythmic alterations in circadian clock genes. Our study suggests that BMAL1 plays a critical role in steroid biosynthesis in human luteinized granulosa cells, thereby emphasizing the importance of BMAL1 in the regulation of reproductive physiology.


Asunto(s)
Factores de Transcripción ARNTL , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Femenino , Humanos , Factores de Transcripción ARNTL/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Estradiol/metabolismo , Células de la Granulosa/metabolismo , Progesterona/metabolismo
3.
J Pharmacol Sci ; 153(4): 215-220, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973219

RESUMEN

OBJECTIVE: Imeglimin is a novel antidiabetic drug structurally related to metformin. Metformin has been shown to modulate the circadian clock in rat fibroblasts. Accordingly, in the present study, we aimed to determine whether imeglimin can impact the circadian oscillator in mouse embryonic fibroblasts (MEFs). METHODS: MEFs carrying a Bmal1-Emerald luciferase (Bmal1-ELuc) reporter were exposed to imeglimin (0.1 or 1 mM), metformin (0.1 or 1 mM), a nicotinamide phosphoribosyltransferase inhibitor FK866, and/or vehicle. Subsequently, Bmal1-ELuc expression and clock gene mRNA expression levels were measured at 10-min intervals for 55 h and 4-h intervals for 32 h, respectively. RESULTS: Imeglimin significantly prolonged the period (from 26.3 to 30.0 h at 0.1 mM) and dose-dependently increased the amplitude (9.6-fold at 1 mM) of the Bmal1-ELuc expression rhythm; however, metformin exhibited minimal effects on these parameters. Moreover, imeglimin notably impacted the rhythmic mRNA expression of clock genes (Bmal1, Per1, and Cry1). The concurrent addition of FK866 partly inhibited the effects of imeglimin on both Bmal1-ELuc expression and clock gene mRNA expression. CONCLUSION: Collectively, these results reveal that imeglimin profoundly affects the circadian clock in MEFs. Further studies are needed to evaluate whether imeglimin treatment could exert similar effects in vivo.


Asunto(s)
Relojes Circadianos , Metformina , Ratas , Ratones , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Fibroblastos/metabolismo , ARN Mensajero/metabolismo , Metformina/farmacología
4.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675058

RESUMEN

The circadian rhythm, which is necessary for reproduction, is controlled by clock genes. In the mouse uterus, the oscillation of the circadian clock gene has been observed. The transcription of the core clock gene period (Per) and cryptochrome (Cry) is activated by the heterodimer of the transcription factor circadian locomotor output cycles kaput (Clock) and brain and muscle Arnt-like protein-1 (Bmal1). By binding to E-box sequences in the promoters of Per1/2 and Cry1/2 genes, the CLOCK-BMAL1 heterodimer promotes the transcription of these genes. Per1/2 and Cry1/2 form a complex with the Clock/Bmal1 heterodimer and inactivate its transcriptional activities. Endometrial BMAL1 expression levels are lower in human recurrent-miscarriage sufferers. Additionally, it was shown that the presence of BMAL1-depleted decidual cells prevents trophoblast invasion, highlighting the importance of the endometrial clock throughout pregnancy. It is widely known that hormone synthesis is disturbed and sterility develops in Bmal1-deficient mice. Recently, we discovered that animals with uterus-specific Bmal1 loss also had poor placental development, and these mice also had intrauterine fetal death. Furthermore, it was shown that time-restricted feeding controlled the uterine clock's circadian rhythm. The uterine clock system may be a possibility for pregnancy complications, according to these results. We summarize the most recent research on the close connection between the circadian clock and reproduction in this review.


Asunto(s)
Factores de Transcripción ARNTL , Proteínas CLOCK , Relojes Circadianos , Reproducción , Animales , Femenino , Humanos , Ratones , Embarazo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica , Placenta/metabolismo , Reproducción/genética , Reproducción/fisiología
5.
Front Nutr ; 9: 966788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071943

RESUMEN

Background and aim: Circadian clocks in most peripheral tissues are entrained mainly by feeding. Therefore, this study aimed to investigate whether the daily rhythm of core body temperature (CBT), including the effect of diet-induced thermogenesis, varies according to habitual feeding time. Methods: Wild-type and uncoupling protein 1 (UCP1) knockout mice were fed only during the first 4 h (Breakfast group) or the last 4 h of the dark period (Dinner group) for 17 days. On day 18, both groups were fed twice for 2 h, at the same starting times. Locomotor activity and CBT were measured continuously during the experiment. Results: On day 18, CBT increased at the beginning of each feeding period, regardless of the group and strain. However, the CBT increase induced by the first meal decreased sharply in the Breakfast group and mildly in the Dinner group; the opposite was observed after the second meal. In UCP1 knockout, but not wild-type, mice, the total amount of CBT was significantly lower in the Dinner group than in the Breakfast group. These effects were mostly independent of the locomotor activity and food intake. Conclusion: These results reveal that the effect of habitual feeding time on the daily rhythm of CBT is sustained at least until the following day. These effects may be mediated by both UCP1-dependent and -independent mechanisms.

6.
Mol Metab ; 49: 101202, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33676029

RESUMEN

OBJECTIVE: Impaired circadian clocks can cause obesity, but their pathophysiological role in brown adipose tissue (BAT), a major tissue regulating energy metabolism, remains unclear. To address this issue, we investigated the effects of complete disruption of the BAT clock on thermogenesis and energy expenditure. METHODS: Mice with brown adipocyte-specific knockout of the core clock gene Bmal1 (BA-Bmal1 KO) were generated and analyzed. RESULTS: The BA-Bmal1 KO mice maintained normal core body temperatures by increasing shivering and locomotor activity despite the elevated expression of thermogenic uncoupling protein 1 in BAT. BA-Bmal1 KO disrupted 24 h rhythmicity of fatty acid utilization in BAT and mildly reduced both BAT thermogenesis and whole-body energy expenditure. The impact of BA-Bmal1 KO on the development of obesity became obvious when the mice were fed a high-fat diet. CONCLUSIONS: These results reveal the importance of the BAT clock for maintaining energy homeostasis and preventing obesity.


Asunto(s)
Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Adipocitos Marrones/metabolismo , Termogénesis/genética , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Peso Corporal , Ritmo Circadiano , Frío , Dieta Alta en Grasa , Metabolismo Energético , Ácidos Grasos , Homeostasis , Masculino , Metaboloma , Ratones , Ratones Noqueados , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo
7.
J Obstet Gynaecol Res ; 46(11): 2292-2297, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32808405

RESUMEN

AIM: Hypertensive disorders of pregnancy (HDP) are serious conditions that occur in 5-10% of pregnancies. Maternal factors, such as maternal age, obesity, and renal disease, have been described as risk factors. In order to extract the background lifestyle and gynecological characteristics for HDP, we conducted a prospective cohort study. METHODS: Pregnant participants were administered a questionnaire on characteristics, menstrual abnormalities and lifestyle factors. The women were followed individually until 1-month postpartum. We used medical records to examine the relationship between menstrual abnormalities and the onset of HDP. RESULTS: We collected data from 193 pregnant women, and excluding 3 who had miscarriage, examined the records of 190. A total of 26 patients developed HDP, of which 10 had early-onset HDP and 16 had late-onset HDP. Although there was no significant association between HDP and dysmenorrhea just prior to pregnancy, there was a significant increase in the incidence of HDP in patients who experienced dysmenorrhea around the age of 20 years (odds ratio 4.362 [95% CI 1.61-11.81]). CONCLUSION: We found that patients with a history of dysmenorrhea around the age of 20 years have a significantly higher risk of developing HDP. Although dysmenorrhea in young adulthood is ameliorated, it may become apparent as a perinatal disease when a physical load such as pregnancy is applied.


Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Adulto , Estudios de Cohortes , Dismenorrea/epidemiología , Dismenorrea/etiología , Femenino , Humanos , Hipertensión Inducida en el Embarazo/epidemiología , Embarazo , Estudios Prospectivos , Factores de Riesgo , Adulto Joven
8.
Diagnostics (Basel) ; 10(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668795

RESUMEN

Inadequate dietary habits in youth are known to increase the risk of onset of various diseases in adulthood. Previously, we found that female college students who skipped breakfast had higher incidences of dysmenorrhea, suggesting that breakfast skipping interferes with ovarian and uterine functions. Since dietary habits can be managed by education, it is preferable to establish a convenient screening system for meal skipping that is associated with dysmenorrhea as part of routine services of health service centers. In this study, we recruited 3172 female students aged from 18 to 25 at Kanazawa University and carried out an annual survey of the status of students' health and lifestyle in 2019, by a questionnaire. We obtained complete responses from 3110 students and analyzed the relationship between dietary habits, such as meal skipping and history of dieting, and menstrual disorders, such as troubles or worries with menstruation, menstrual irregularity, menstrual pain, and use of oral contraceptives. The incidence of troubles or worries with menstruation was significantly higher in those with breakfast skipping (p < 0.05) and a history of dieting (p < 0.001). This survey successfully confirmed the positive relationship between breakfast skipping and menstrual pain (p < 0.001), indicating that this simple screening test is suitable for picking up breakfast skippers who are more prone to gynecologic disorders. In conclusions, since dysmenorrhea is one of the important clinical signs, breakfast skipping may become an effective marker to predict the subsequent onset of gynecological diseases at health service centers. Considering educational correction of meal skipping, breakfast skipping is a potential and preventable predictor that will contribute to managing menstrual disorders from a preventive standpoint in the future.

9.
Nutrients ; 12(5)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370105

RESUMEN

There are growing concerns that poor dietary behaviors at young ages will increase the future risk of chronic diseases in adulthood. We found that female college students who skipped breakfast had higher incidences of dysmenorrhea and irregular menstruation, suggesting that meal skipping affects ovarian and uterine functions. Since dysmenorrhea is more prevalent in those with a past history of dieting, we proposed a novel concept that inadequate dietary habits in adolescence become a trigger for the subsequent development of organic gynecologic diseases. Since inadequate feeding that was limited during the non-active phase impaired reproductive functions in post-adolescent female rats, we hypothesize that circadian rhythm disorders due to breakfast skipping disrupts the hypothalamic-pituitary-ovarian axis, impairs the reproductive rhythm, and leads to ovarian and uterine dysfunction. To explain how reproductive dysfunction is memorized from adolescence to adulthood, we hypothesize that the peripheral clock system also plays a critical role in the latent progression of reproductive diseases together with the central system, and propose naming this concept "adolescent dietary habit-induced obstetric and gynecologic disease (ADHOGD)". This theory will contribute to analyzing the etiologies of and developing prophylaxes for female reproductive diseases from novel aspects. In this article, we describe the precise outline of the above hypotheses with the supporting evidence in the literature.


Asunto(s)
Relojes Biológicos/fisiología , Desayuno , Dismenorrea/etiología , Conducta Alimentaria/fisiología , Enfermedades de los Genitales Femeninos/etiología , Comidas , Trastornos de la Menstruación/etiología , Fenómenos Fisiológicos de la Nutrición/fisiología , Adolescente , Conducta del Adolescente , Adulto , Femenino , Humanos , Sistema Hipotálamo-Hipofisario , Ovario , Reproducción , Adulto Joven
10.
Cancer Sci ; 110(8): 2658-2666, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31199029

RESUMEN

Although direct adhesion of cancer cells to the mesothelial cell layer is considered to be a key step for peritoneal invasion of ovarian cancer cell masses (OCM), we recently identified a different strategy for the peritoneal invasion of OCM. In 6 out of 20 cases of ovarian carcinoma, extraperitoneal growth of the OCM was observed along with the neovascularization of feeding vessels, which connect the intraperitoneal host stroma and extraperitoneal lesions through the intact mesothelial cell layer. As an early step, the OCMs anchor in the extraperitoneal fibrin networks and then induce the migration of CD34-positive and vascular endothelial growth factor A (VEGF-A)-positive endothelial cells, constructing extraperitoneal vascular networks around the OCM. During the extraperitoneal growth of OCM, podoplanin-positive and α smooth muscle actin (αSMA)-positive cancer-associated fibroblasts (CAF) appears. In more advanced lesions, the boundary line of mesothelial cells disappears around the insertion areas of feeding vessels and then extraperitoneal and intraperitoneal stroma are integrated, enabling the OCM to invade the host stroma, being associated with CAF. In addition, tissue factors (TF) are strongly detected around these peritoneal implantation sites and their levels in ascites were higher than that in blood. These findings demonstrate the presence of neovascularization around fibrin net-anchored OCMs on the outer side of the intact peritoneal surface, suggesting a novel strategy for peritoneal invasion of ovarian cancer and TF-targeted intraperitoneal anti-cancer treatment. We observed and propose a novel strategy for peritoneal implantation of ovarian cancer. The strategy includes the preinvasive growth of fibrin-anchored cancer cells along with neovascularization on the outer side of the intact peritoneal surface.


Asunto(s)
Fibrina/metabolismo , Invasividad Neoplásica/patología , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Adulto , Anciano , Ascitis/metabolismo , Ascitis/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Epitelio/metabolismo , Epitelio/patología , Femenino , Humanos , Persona de Mediana Edad , Neovascularización Patológica/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/patología , Peritoneo/metabolismo , Peritoneo/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Cancer Sci ; 110(7): 2247-2257, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31099446

RESUMEN

Glioblastoma is one of the most devastating human malignancies for which a novel efficient treatment is urgently required. This pre-clinical study shows that eribulin, a specific inhibitor of telomerase reverse transcriptase (TERT)-RNA-dependent RNA polymerase, is an effective anticancer agent against glioblastoma. Eribulin inhibited the growth of 4 TERT promoter mutation-harboring glioblastoma cell lines in vitro at subnanomolar concentrations. In addition, it suppressed the growth of glioblastoma cells transplanted subcutaneously or intracerebrally into mice, and significantly prolonged the survival of mice harboring brain tumors at a clinically equivalent dose. A pharmacokinetics study showed that eribulin quickly penetrated brain tumors and remained at a high concentration even when it was washed away from plasma, kidney or liver 24 hours after intravenous injection. Moreover, a matrix-assisted laser desorption/ionization mass spectrometry imaging analysis revealed that intraperitoneally injected eribulin penetrated the brain tumor and was distributed evenly within the tumor mass at 1 hour after the injection whereas only very low levels of eribulin were detected in surrounding normal brain. Eribulin is an FDA-approved drug for refractory breast cancer and can be safely repositioned for treatment of glioblastoma patients. Thus, our results suggest that eribulin may serve as a novel therapeutic option for glioblastoma. Based on these data, an investigator-initiated registration-directed clinical trial to evaluate the safety and efficacy of eribulin in patients with recurrent GBM (UMIN000030359) has been initiated.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Furanos/administración & dosificación , Glioblastoma/tratamiento farmacológico , Cetonas/administración & dosificación , Regiones Promotoras Genéticas/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Femenino , Furanos/farmacología , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Humanos , Inyecciones Intraperitoneales , Cetonas/farmacología , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Telomerasa/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Curr Pharm Biotechnol ; 19(10): 764-770, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30378495

RESUMEN

The invasion of an extravillous trophoblast (EVT) into maternal decidual tissues, especially towards maternal spiral arteries, is an essential process in the human placental formation and subsequent normal fetal development. However, the precise regulatory mechanisms to induce EVT invasion towards arteries and/or to protect EVT from further invasion are not well understood. We found that a chemokine receptor, CCR1, was specifically expressed on EVT migrating towards maternal arteries. Using EVT isolated from a primary villous explant culture, RANTES, which is one of the ligands for CCR1, was shown to enhance EVT invasion. Furthermore, we observed that the platelets were deposited among intravascular EVT and platelet-derived soluble factors, which contained RANTES, enhanced EVT invasion. On the one hand, dipeptidyl peptidase IV (DPPIV), which can metabolize RANTES on the cell surface, was expressed on non-invading EVT and was demonstrated to suppress EVT invasion. In contrast, laeverin/aminopeptidase Q, which is specifically expressed on EVT, was shown to induce EVT invasion. Also, CD9 which is a cell surface marker of platelets and a regulator of integrin function was expressed on EVT and gene knockdown of the CD9 molecule enhanced EVT invasion. These findings suggest that the chemokine-chemokine receptor, chemokine-peptidase, and CD9-integrin systems play important roles in the regulation of EVT invasion during early human placental formation.


Asunto(s)
Quimiocinas/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Placenta/metabolismo , Tetraspanina 29/metabolismo , Trofoblastos/metabolismo , Plaquetas/metabolismo , Movimiento Celular/fisiología , Quimiocina CCL5/metabolismo , Femenino , Humanos , Integrinas/metabolismo , Placentación/fisiología , Embarazo
13.
J Vis Exp ; (136)2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29985366

RESUMEN

Human telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, and it elongates telomere through RNA-dependent DNA polymerase activity. Although TERT is named as a reverse transcriptase, structural and phylogenetic analyses of TERT demonstrate that TERT is a member of right-handed polymerases, and relates to viral RNA-dependent RNA polymerases (RdRPs) as well as viral reverse transcriptase. We firstly identified RdRP activity of human TERT that generates complementary RNA stand to a template non-coding RNA and contributes to RNA silencing in cancer cells. To analyze this non-canonical enzymatic activity, we developed RdRP assay with recombinant TERT in 2009, thereafter established in vitro RdRP assay for endogenous TERT. In this manuscript, we describe the latter method. Briefly, TERT immune complexes are isolated from cells, and incubated with template RNA and rNTPs including radioactive rNTP for RdRP reaction. To eliminate single-stranded RNA, reaction products are treated with RNase I, and the final products are analyzed with polyacrylamide gel electrophoresis. Radiolabeled RdRP products can be detected by autoradiography after overnight exposure.


Asunto(s)
ARN/genética , Telomerasa/metabolismo , Telómero/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Humanos , Telomerasa/genética
14.
Mol Cell Biol ; 36(8): 1248-59, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26830230

RESUMEN

RNA-dependent RNA polymerase (RdRP) plays key roles in RNA silencing to generate double-stranded RNAs. In model organisms, such as Caenorhabditis elegans and Neurospora crassa, two types of small interfering RNAs (siRNAs), primary siRNAs and secondary siRNAs, are expressed; RdRP produces secondary siRNAs de novo, without using either Dicer or primers, while primary siRNAs are processed by Dicer. We reported that human telomerase reverse transcriptase (TERT) has RdRP activity and produces endogenous siRNAs in a Dicer-dependent manner. However, de novo synthesis of siRNAs by human TERT has not been elucidated. Here we show that the TERT RdRP generates short RNAs that are complementary to template RNAs and have 5'-triphosphorylated ends, which indicates de novo synthesis of the RNAs. In addition, we confirmed short RNA synthesis by TERT in several human carcinoma cell lines and found that TERT protein levels are positively correlated with RdRP activity.


Asunto(s)
ARN Polimerasa Dependiente del ARN/metabolismo , ARN/metabolismo , Telomerasa/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Humanos , ARN/análisis , ARN Polimerasa Dependiente del ARN/análisis , Telomerasa/análisis
15.
Cancer Med ; 5(2): 304-14, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26700550

RESUMEN

Exosomes are small membrane vesicles secreted from a variety of cell types. Recent evidence indicates that human cells communicate with each other by exchanging exosomes. Cancer cells closely interact with neighboring stromal cells, and together they cooperatively promote disease via bidirectional communication. Here, we investigated whether exosomes can play roles in intercellular communication between cancer cells and neighboring fibroblasts. Endometrial fibroblasts were isolated from normal endometrial tissues and from endometrial cancer tissues, and cell-to-cell transfer of endometrial cancer cell line Ishikawa-derived exosomes was examined. The isolated fibroblasts were cultured in conditioned media from CD63-GFP-expressing Ishikawa cells, and we found that GFP-positive exosomes were transferred from Ishikawa cells to the fibroblasts. Next, we introduced a shRNA for a luciferase gene into Ishikawa cells. This shRNA was encapsulated into exosomes, was transferred to the fibroblasts, and then downregulated luciferase expression in the fibroblasts. The mature microRNAs naturally expressed in Ishikawa-derived exosomes were also transported into the endometrial fibroblasts, and they altered the microRNA expression profiles of the fibroblasts. These results indicated that endometrial cancer cells could transmit small regulatory RNAs to endometrial fibroblasts via exosomes. Our findings document a previously unknown mode of intercellular communication between cancer cells and related fibroblasts in human endometrium.


Asunto(s)
Comunicación Celular , Neoplasias Endometriales/metabolismo , Endometrio/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Células del Estroma/metabolismo , Transporte Biológico , Línea Celular , Análisis por Conglomerados , Neoplasias Endometriales/genética , Endometrio/patología , Exosomas/ultraestructura , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética
16.
Cancer Sci ; 106(11): 1486-92, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26331588

RESUMEN

Telomeres, the repetitive sequences at chromosomal ends, protect intact chromosomes. Telomeres progressively shorten through successive rounds of cell divisions, and critically shortened telomeres trigger senescence and apoptosis. The enzyme that elongates telomeres and maintains their structure is known as telomerase. The catalytic subunit of this enzyme (telomerase reverse transcriptase [TERT]) is expressed at a high level in malignant cells, but at a very low level in normal cells. Although telomerase activity was long believed to be the only function of TERT, emerging evidence indicates that TERT plays roles beyond telomeres. For example, TERT contributes to stem cell maintenance and cell reprogramming processes in a manner independent of its canonical function. Even some types of splice variants that lack the telomerase catalytic domains exhibit the functions in a manner that does not depend on telomerase activity. We recently demonstrated that the RNA-dependent RNA polymerase (RdRP) activity of TERT is involved in regulation of gene silencing and heterochromatic transcription. Moreover, TERT RdRP activity is mediated by a newly identified complex, distinct from the authentic telomerase complex, that plays a role in cancer stem cells in a telomere maintenance independent manner. TERT has attracted interest as a molecular target for anticancer treatment, but previous efforts aimed at developing novel therapeutic strategies focused only on the canonical function of TERT. However, accumulating evidence about the non-canonical functions of TERT led us to speculate that the functions other than telomerase might be therapeutic targets as well. In this review, we discuss the non-canonical functions of TERT and their potential applications for anticancer treatment.


Asunto(s)
Telomerasa/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Homeostasis/fisiología , Humanos , Telómero/metabolismo
17.
Int J Mol Sci ; 16(1): 1192-208, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25569094

RESUMEN

MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and mature microRNAs, respectively. Although the fundamental functions of microRNAs in RNA silencing have been gradually uncovered, less is known about the regulatory mechanisms of microRNA expression. Here, we report that telomerase reverse transcriptase (TERT) extensively affects the expression levels of mature microRNAs. Deep sequencing-based screens of short RNA populations revealed that the suppression of TERT resulted in the downregulation of microRNAs expressed in THP-1 cells and HeLa cells. Primary and precursor microRNA levels were also reduced under the suppression of TERT. Similar results were obtained with the suppression of either BRG1 (also called SMARCA4) or nucleostemin, which are proteins interacting with TERT and functioning beyond telomeres. These results suggest that TERT regulates microRNAs at the very early phases in their biogenesis, presumably through non-telomerase mechanism(s).


Asunto(s)
MicroARNs/metabolismo , Telomerasa/metabolismo , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación hacia Abajo , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
PLoS One ; 9(11): e112438, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25375122

RESUMEN

Treatment of advanced ovarian cancer involves platinum-based chemotherapy. However, chemoresistance is a major obstacle. Cancer stem cells (CSCs) are thought to be one of the causes of chemoresistance, but the underlying mechanism remains elusive. Recently, human telomerase reverse transcriptase (hTERT) has been reported to promote CSC-like traits. In this study, we found that a mitotic inhibitor, eribulin mesylate (eribulin), effectively inhibited growth of platinum-resistant ovarian cancer cell lines. Eribulin-sensitive cells showed a higher efficiency for sphere formation, suggesting that these cells possess an enhanced CSC-like phenotype. Moreover, these cells expressed a higher level of hTERT, and suppression of hTERT expression by siRNA resulted in decreased sensitivity to eribulin, suggesting that hTERT may be a target for eribulin. Indeed, we found that eribulin directly inhibited RNA-dependent RNA polymerase (RdRP) activity, but not telomerase activity of hTERT in vitro. We propose that eribulin targets the RdRP activity of hTERT and may be an effective therapeutic option for CSCs. Furthermore, hTERT may be a useful biomarker to predict clinical responses to eribulin.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Furanos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Cetonas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Transcripción Reversa/efectos de los fármacos , Telomerasa/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Esferoides Celulares/enzimología
19.
Fertil Steril ; 101(5): 1337-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24656887

RESUMEN

OBJECTIVE: To investigate the impact of estrogen contained in oral contraceptives (OCs) on the action of progestin on ovarian endometrioma epithelial cells. DESIGN: Experimental in vitro study and immunohistochemical analysis. SETTING: University hospital. PATIENT(S): Patients who underwent surgery due to ovarian endometrioma. INTERVENTION(S): Not applicable. MAIN OUTCOME MEASURE(S): Telomerase-immortalized epithelial cells derived from ovarian endometrioma were treated with norethindorone (NET; 80 nmol/L) or levonorgestrel (LNG; 20 nmol/L) with or without 17ß-ethynylestradiol (EE; 0.6 nmol/L) for 96 hours, and the cell growth was monitored. Estrogen receptor (ER) α, progesterone receptor (PR) A, and PRB expressions in clinical samples of ovarian endometrioma epithelial cells were analyzed with the use of immunohistochemistry. RESULT(S): NET or LNG effectively suppressed cell growth, and addition of EE significantly enhanced the growth suppression. This EE-mediated enhancement of cell growth suppression was observed only in cells that expressed ERα and therefore was ERα dependent. Western blot analysis revealed that expression of PRB was significantly induced by the addition of EE. Immunohistochemical analysis confirmed that ERα expression and PRB expression are significantly correlated, indicating that progestin-sensitive cells with PRB expression are predisposed to react with estrogen stimulation. CONCLUSION(S): These findings suggest that EE contained in OCs plays a supportive role in progestin-induced growth inhibition of ovarian endometrioma epithelial cells. In the absence of estrogen priming, concurrent estrogen action was essential for rapid induction of PR to achieve maximal progestin effect.


Asunto(s)
Anticonceptivos Orales/administración & dosificación , Endometriosis , Estrógenos/administración & dosificación , Progestinas/administración & dosificación , Línea Celular Transformada , Combinación de Medicamentos , Endometriosis/tratamiento farmacológico , Endometriosis/metabolismo , Femenino , Humanos , Resultado del Tratamiento
20.
Mol Cell Biol ; 34(9): 1576-93, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24550003

RESUMEN

In the fission yeast Schizosaccharomyces pombe, centromeric heterochromatin is maintained by an RNA-directed RNA polymerase complex (RDRC) and the RNA-induced transcriptional silencing (RITS) complex in a manner that depends on the generation of short interfering RNA. In association with the telomerase RNA component (TERC), the telomerase reverse transcriptase (TERT) forms telomerase and counteracts telomere attrition, and without TERC, TERT has been implicated in the regulation of heterochromatin at locations distinct from telomeres. Here, we describe a complex composed of human TERT (hTERT), Brahma-related gene 1 (BRG1), and nucleostemin (NS) that contributes to heterochromatin maintenance at centromeres and transposons. This complex produced double-stranded RNAs homologous to centromeric alpha-satellite (alphoid) repeat elements and transposons that were processed into small interfering RNAs targeted to these heterochromatic regions. These small interfering RNAs promoted heterochromatin assembly and mitotic progression in a manner dependent on the RNA interference machinery. These observations implicate the hTERT/BRG1/NS (TBN) complex in heterochromatin assembly at particular sites in the mammalian genome.


Asunto(s)
Centrómero/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Mitosis , ARN/metabolismo , Retroelementos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Telomerasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...